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Abstract
Based on the Boltzmann equation, the detonation problem is dealt with on
a mesoscopic level. The model is based on the assumption that ahead of a
shock an explosive gas mixture is in meta stable equilibrium. Starting from
the Von Neumann point the chemical reaction, initiated by the pressure jump,
proceeds until the chemical equilibrium is reached. Numerical solutions of
the derived macroscopic equations as well as the corresponding Hugoniot
diagrams which reveal the physical relevance of the mathematical model are
provided.

PACS numbers: 47.40.−x, 82.40.Fp

1. Introduction

Detonation is a rapid and violent process of combustion generating a strong shock wave which
is sustained by chemical reactions. The most easily measurable characteristic quantity of
a detonation is the velocity at which the shock propagates into the explosive gas mixture.
The front of a detonation wave has approximately a plane shape and moves with constant
supersonic velocity. According to such a scheme, it is reasonable, on mathematical grounds,
to treat detonation as a one-dimensional steady propagation problem of a shock front moving
with constant velocity D (see [1, 2]). Referring to figure 1, where the pressure of the gas is
plotted versus space, the steady detonation process can be represented (as discussed in [3, 4])
in the following way.

(i) In region D1 = [x0, +∞), ahead of the shock, an explosive mixture is in metastable
equilibrium at rest with negligible reaction rate.

(ii) At the space point x0 there is a jump discontinuity. Until this discontinuity (Von Neumann
point) no reaction takes place. Starting from this point, the chemical reaction (in general an
exothermic reaction) is initiated by the pressure jump, so that the reaction itself proceeds
with a finite reaction rate and is completed in the final state point xF , where the gas mixture
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Figure 1. Qualitative evolution of the pressure p during a detonation process caused by a shock
wave of speed D; D1 denotes the region ahead of the shock, D2 the chemical reaction zone and
D3 the following flow zone; N indicates the Von Neumann point at x0, F the final state point at xF

and xB the rear boundary point.

reaches chemical equilibrium. Hereinafter, we will indicate with D2 = (xF , x0) such a
region, the so-called reaction zone, characterized by strong chemical disequilibrium. The
flow in the reaction zone is steady and the shock front propagates with constant detonation
velocity D.

(iii) In region D3 = [xB, xF ], the gas mixture is in chemical equilibrium. Region D3 is known
in the literature as the following flow connecting the rear boundary point xB to the final
state point xF . Such a rear boundary can be interpreted as the side of a hypothetical piston
moving with constant velocity up. In region D3, the pressure profile can be characterized
either by a constant state up to the point xF (over-driven detonation), or by a constant
state followed by a rarefaction wave which takes its origin in xF itself (unsupported
detonation).

According to this phenomenology, it is possible to state two mathematical problems.

(a) Solving the shock wave problem between the point x0 ∈ D1 and any point xR ∈ D2, is
achieved by finding all possible steady solutions for the reaction zone and by treating D
as a parameter once the physical state of the explosive mixture in D1 has been stated. The
solution of such a problem provides then the thickness |x0 − xF | of the reaction zone.
This problem is known in the literature as the D-discussion [4].

(b) Determining a value of D leads to a suitable steady solution for a given piston velocity up

which in turn allows the evaluation of the flow in D3. This problem is generally quoted
as the piston problem.

The two problems are obviously related since problem (a) determines the existence of
steady solutions for all values of D above a certain minimum value. For such a value,
the following flow is characterized by an unsupported detonation; higher values of D
allow over-driven detonations, so that a solution of problem (b) depends on a solution of
problem (a).

These problems have been widely studied in the literature, starting from the so-called
ZND model [4] which is still considered as the simplest description of the steady detonation
for an explosive mixture with only a one-way exothermic reaction. The following papers
[5–15] take into account state equations of detonating mixtures at a macroscopic level. In
particular, [7, 10, 11] consider macroscopic equations at a Euler level, while the others
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include in the equations viscous and/or diffusion terms. Moreover, [9, 11, 12, 15] are
also concerned with the problem of nonlinear stability of the travelling wave. Finally,
[14] deals with detonation initiation. In order to get acquainted with the mathematical
models used by the aforementioned authors, we recommend the book [16]. Nevertheless,
the papers [5–15] do not provide the profiles of macroscopic quantities relevant to the process
in the reaction zone [xF , x0]. However, a detailed study of these profiles can be found in
two very recent papers [17, 18] based on Monte Carlo simulations. In addition, a deep
analysis of the profiles in the reaction zone and conditions for overdriven or unsupported
detonations are presented in [19, 20], where the main objective is the study of linear and
nonlinear stabilities for the detonation processes considered in [20]. At the end of the
paper, in section 7, we will give some more details about the results of these last four
papers.

In the present paper, the general procedure used to study the detonation problem is
different from those above. We start with the Boltzmann equation for a gas mixture of
four components undergoing a reversible bimolecular reaction 1 + 2 � 3 + 4, very often
considered in [1, 2, 4], as a characteristic of several detonation processes. The actual
explicit expression of the reaction rate at the kinetic level is provided. Let us stress that
knowledge of the reaction rate is important since this quantity decides whether a detonation
does or does not occur (see [1], p 224, and related bibliography). We then derive a set
of macroscopic equations at a Euler level and provide the mathematical formulation of the
above problem (a), proposing its solution procedure and determining the detonation wave
structure. In the authors’ opinion such a procedure, involving also the phenomenology
of detonation at the microscopic level, is more complete and detailed. The fact that we
consider a special chemical reaction (bimolecular) does not restrict the generality of the
procedure proposed here. Other types of chemical reactions require a different Boltzmann
model at the kinetic level and different expressions for the reaction rate but do not
affect the mathematical structure of the macroscopic equations and the problem presented
here.

An analogous philosophy to treat detonation problems has been proposed for the first
time in recent papers [21, 22]. In these papers, the microscopic state of the mixture
has been described in terms of very simple discrete velocity models, taking into account
both bimolecular and three-molecular reactions coming from the hydrogen–oxygen chain.
However, these models provide only heuristic expressions for the reaction rates. Using these
last models the problem of linear stability has been investigated in [23]. The plan of the present
paper is organized as follows. In section 2 we resume the relevant features of the kinetic model
deduced in a very recent work [24]. We deduce the macroscopic equations and compute the
reaction rate on the basis of a cross section model for exothermic reactions proposed in [25]
in section 3. In section 4, we perform the solution procedure for the mathematical problem
(a) which allows us to determine all the states of the reaction zone and its thickness once
a boundary value problem, involving a nonlinear ordinary differential equation, is solved.
Moreover, in section 5, we provide the procedure to draw the Hugoniot diagram which
describes, depending on the parameter D, all the detonation states. We estimate as well the
so-called Chapman–Jouguet velocity DJ [4], relevant for solving problem (b). Finally, in
section 6, numerical results showing detonation profiles and Hugoniot diagrams will be
proposed in order to evaluate the thickness of the reaction zone.

Let us emphasize that the procedure proposed here deals with macroscopic equations
closed at a Euler level. Future developments could involve macroscopic equations including
viscous and diffusion terms, equations coming from a semi-continuous Boltzmann model [26]
or from kinetic models of dense fluids, as discussed in a very recent review [27].
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2. The kinetic model

Consider a mixture of four gases, say 1, 2, 3 and 4, undergoing a bimolecular chemical
reversible reaction

1 + 2 � 3 + 4. (1)

Examples of this type of reactions triggering detonation are

H2O + H � OH + H2 CO2 + H2 � CO + H2O O + N2 � NO + N.

The microscopic state of the gas is defined by the one-particle distribution functions fi for
each gas species, i = 1, . . . , 4, where

fi = fi(t, x, v) t ∈ R
+ x ∈ R

3 v ∈ R
3.

Unless necessary, hereinafter the explicit dependence of fi on time t and position x will be
often omitted. Each gas particle is characterized by its mass mi and its internal chemical bond
energy Ei . These quantities will be used in the following:

ri = mi

M
M = m1 + m2 and E = E3 + E4 − E1 − E2

where E � 0. Because of mass conservation of reaction (1), M = m3 + m4. Let us indicate
with V and V ′ the relative speeds of particles before and after collisions, and by Ω and Ω′ the
unit vectors defining their directions. When defining other quantities appearing in the kinetic
equations, it is preferable to distinguish between elastic and inelastic collisions.

The elastic collisions are all those between possible pairs (i, j), i, j = 1, . . . , 4, of particle
species which preserve mass, momentum and kinetic energy. The post-collisional velocities,
computed according to these conservation laws, are given by

vij = miv + mjw − mjV Ω′

mi + mj

wij = miv + mjw + miV Ω′

mi + mj

. (2)

The elastic mechanism is ruled by a differential scattering cross section, which in general
depends upon the relative speed of colliding particles and the scalar product Ω · Ω′. This
quantity will be indicated by I

ij

ij = I
ij

ij (V ,Ω,Ω′) with the property that I
ij

ij = I
ji

ji .
The chemical reactions are inelastic collisions of the pair of particles (1, 2) which produce

the other pair (3, 4) and vice versa. These interactions preserve mass, momentum and total
(kinetic plus chemical bond) energy. Nevertheless, since E � 0, production of particles
(3, 4) requires that the kinetic energy of the pair (1, 2) must exceed an assigned quantity
(endothermic reaction), while reaction (3, 4) → (1, 2) is the exothermic one. Introducing the
quantities

µij = mimj

M
ε2
ij = 2E

µij

i, j = 1, . . . , 4 (3)

as well as

V12 =
[
µ12

µ34

(
V 2 − ε2

12

)] 1
2

V34 =
[
µ34

µ12

(
V 2 + ε2

34

)] 1
2

(4)

and taking into account the conservation laws, it is possible to compute the outcoming
velocities, (v1, w1) or (v2, w2), of the interaction (1, 2) → (3, 4) in terms of the incoming
velocities

v1 = r1v + r2w − r4V12Ω′ w1 = r1v + r2w + r3V12Ω′

v2 = r2v + r1w − r3V12Ω′ w2 = r2v + r1w + r4V12Ω′.
(5)
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Analogously, the outcoming velocities, (v3, w3) or (v4, w4), of the interaction (3, 4) → (1, 2)

are provided by

v3 = r3v + r4w − r2V34Ω′ w3 = r3v + r4w + r1V34Ω′

v4 = r4v + r3w − r1V34Ω′ w4 = r4v + r3w + r2V34Ω′.
(6)

The inelastic mechanism of interaction,similar to the elastic one, is ruled by the differential
cross section I 34

12 for reaction (1, 2) → (3, 4) and I 12
34 for reaction (3, 4) → (1, 2). These

quantities are again functions of V , Ω and Ω′ and are related by the detailed balance condition
[28] given by

µ2
34V

2I 12
34 (V ,Ω,Ω′) = µ2

12V
2

34I
34
12 (V34,Ω,Ω′). (7)

Moreover, recall that inelastic differential cross sections satisfy the property Ihk
ij = I kh

ji .
In the present paper, for the exothermic reaction we choose the cross section proposed

in [25],

I 12
34 (V ) = β

V

(
1 − χ2

V 2

)
U(V − χ) (8)

where χ denotes a threshold velocity, β is a scale factor and U is the Heaviside function.
This synthetic cross section for exothermic chemical reactions represents the main features
of realistic chemical cross sections [29]. It includes the necessary activation threshold and
decreases monotonically for high energies. It can be considered as an improved line-of-centre
cross section. Line-of-centre cross sections were suggested in [30] and have been used in
several papers as, e.g., in [31]. Applying the conditions of detailed balance, we obtain the
endothermic cross section

I 34
12 (V ) = β

(
µ34

µ12

) 3
2

√
V 2 − ε2

12

V 2

(
1 − χ2

µ12

µ34

(
V 2 − ε2

12

)
)

U

(
V −

√
µ34

µ12
χ2 + ε2

12

)
. (9)

The kinetic equations (Boltzmann equation) for the reactive gas mixture, which rule the
spatio-temporal evolution of the system, are given by

∂fi

∂t
+ v · ∇fi = Qi[f] + Ri[f] i = 1, . . . , 4 (10)

where f = {f1, f2, f3, f4}(t, x, v). In equation (10) the quantities Qi and Ri are the collision
terms due to elastic and inelastic collisions. All these quantities are functions of (t, x, v) as
well.

The elastic collision terms are well known in the literature when one considers the full
Boltzmann equation extended to a mixture of four inert gases [32, 33]:

Qi[f] =
∑

j

∫
R

3
dw

∫
S

V I
ij

ij (V ,Ω,Ω′)fi(vij )fj (wij ) dΩ′

− fi(v)
∑

j

∫
R

3
dw

∫
S

V I
ij

ij (V ,Ω,Ω′)fj (w) dΩ′. (11)

Here vij and wij , i, j = 1, . . . , 4, are given by equations (2) and S is the unit sphere. The
inelastic collision terms have been derived in [24]. For more precise description of these terms
the reader can refer to [34]. In particular, we have

R1[f] =
(

µ12

µ34

)3 ∫
R

3
dw

∫
S

V I 34
12 (V ,Ω,Ω′)f3(v1)f4(w1) dΩ′

− f1(v)

∫
R

3
dw

∫
S

V I 34
12 (V ,Ω,Ω′)f2(w) dΩ′ (12a)
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R2[f] =
(

µ12

µ34

)3 ∫
R

3
dw

∫
S

V I 34
12 (V ,Ω,Ω′)f4(v2)f3(w2) dΩ′

− f2(v)

∫
R

3
dw

∫
S

V I 34
12 (V ,Ω,Ω′)f1(w) dΩ′ (12b)

R3[f] =
(

µ34

µ12

)3 ∫
R

3
dw

∫
S

V I 12
34 (V ,Ω,Ω′)f1(v3)f2(w3) dΩ′

− f3(v)

∫
R

3
dw

∫
S

V I 12
34 (V ,Ω,Ω′)f4(w) dΩ′ (12c)

R4[f] =
(

µ34

µ12

)3 ∫
R

3
dw

∫
S

V I 12
34 (V ,Ω,Ω′)f2(v4)f1(w4) dΩ′

− f4(v)

∫
R

3
dw

∫
S

V I 12
34 (V ,Ω,Ω′)f3(w) dΩ′ (12d)

where vi and wi , i = 1, . . . , 4, are defined by equations (5) and (6).
According to [24], we now recall the principal properties of the collision terms (11) and

(12). Conservation laws of mass, momentum and total energy imply
4∑

i=1

∫
R

3
ψi(v){Qi[f] + Ri[f]}(v) dv = 0 (13)

when ψi = mi , or ψi = miv, or ψi = Ei + miv
2/2, i = 1, . . . , 4. Moreover, only for the

reactive collision terms mass conservation results in∫
R

3
{R1[f]}(v) dv =

∫
R

3
{R2[f]}(v) dv = −

∫
R

3
{R3[f]}(v) dv = −

∫
R

3
{R4[f]}(v) dv. (14)

Kinetic equations (10) provide an H-theorem. Without going into detail (see again [24])
let us recall that equations (10) admit a stable equilibrium solution if and only if

Qi[f] = Ri[f] = 0 i = 1, . . . , 4 ∀v. (15a)

In particular, Qi[f] = 0 �⇒
fi(v)fj (w) = fi(vij )fj (wij ) i, j = 1, . . . , 4 ∀v, w,Ω′ (15b)

while Ri[f] = 0 �⇒{
fi(v)fj (w) = fi(vij )fj (wij )

(m3m4)
3f1(v)f2(w) = (m1m2)

3f3(v1)f4(w1)
(15c)

i, j = 1, . . . , 4, and ∀v, w,Ω′. Condition (15b) implies (see [32])

fi(v) = f̃ i(v) = ni

( mi

2πκT

) 3
2

exp

(
−mi(v − u)2

2κT

)
(16)

whereas conditions (15c) are satisfied if the distribution functions have the form of
equation (16) with the further constraint

n1n2

n3n4
=

(
m1m2

m3m4

) 3
2

exp

(
E

κT

)
(17)

κ being the Boltzmann constant.
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Equation (16) provides the well-known expressions of Maxwellian distribution functions,
governing equilibrium for elastic scattering only. In general, the f̃ i are functions of (t, x, v)

(local Maxwellians) through the number densities ni , the mean velocity u and the temperature
T defined as follows:

ni(t, x) =
∫

R
3
fi(t, x, v) dv n(t, x) =

∑
i

ni(t, x) (18)

u(t, x) = 1

ρ(t, x)

∑
i

mi

∫
R

3
vfi(t, x, v) dv ρ(t, x) =

∑
i

mini(t, x) (19)

T (t, x) = 1

3κn(t, x)

∑
i

mi

∫
R

3
[v − u(t, x)]2fi(t, x, v) dv (20)

where n and ρ are the total number and mass density, respectively.
Equation (17) expresses the mass action law of chemical equilibrium [35]. Therefore,

when only equation (16) holds, the gas is in mechanical equilibrium and equation (15b)
is satisfied; when equations (16) and (17) simultaneously hold then mechanical–chemical
equilibrium is reached and all the right-hand sides of the kinetic equations (10) vanish.

3. Macroscopic equations

The procedure to obtain macroscopic equations from the kinetic equations is well known [36].
In the present case, the balance equation for the particle number density of each species is
obtained by integrating equations (10) over v

∂ni

∂t
+ ∇ · (niui ) =

∫
R

3
Ri[f] dv def= Si. (21)

By multiplying equations (10) by miv, summing over i (taking into account the properties
(13)), and integrating over v, we obtain the conservation equation of momentum

∂

∂t
(ρu) + ∇ · (ρu ⊗ u + P) = 0 (22)

where

P(t, x) =
∑

i

mi

∫
R

3
[v − u(t, x)] ⊗ [v − u(t, x)]fi(t, x, v) dv. (23)

Finally, the balance of total energy is achieved by multiplying equations (10) by 1
2miv

2 + Ei ,
summing over i (taking into account the properties (13) and (14)) and integrating over v:

∂

∂t

(
E + ρ

u2

2
+ Ech

)
+ ∇ ·

([(
E + ρ

u2

2
+ Ech

)
I + P

]
u + q + qch

)
= 0 (24)

where I is the unit tensor and

E(t, x) = 3

2
n(t, x)κT (t, x) = 1

2
tr[P(t, x)] Ech(t, x) =

∑
i

Eini(t, x) (25)

q(t, x) = 1

2

∑
i

mi

∫
R

3
[v − u(t, x)]2[v − u(t, x)]fi(t, x, v) dv (26)

qch(t, x) =
∑

i

Ei

[∫
R

3
vfi(t, x, v) dv − ni(t, x)u(t, x)

]
. (27)
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Equations (21), (22) and (24) are the macroscopic equations which are known as a non-
closed set of equations. The simplest way to provide a closure is to assume that the distribution
functions appearing in equations (10) are local Maxwellians with number densities ni which
do not necessarily satisfy the mass action law (17). This assumption reflects the fact that
the gas has reached mechanical equilibrium but can still be in chemical non-equilibrium. As
we shall see, such a physical picture is consistent with the purposes of the present paper.
Accordingly, when fi = f̃ i , it is possible to show that q and qch vanish, and the tensor P
becomes diagonal, so that closure of the above set is performed.

In a more direct and rigorous way,we can derive the closed set of spatially one-dimensional
macroscopic equations with the following procedure.

(a) Inserting local Maxwellians (given by equation (16)) into the kinetic equations (10)
and computing explicitly the time and space derivatives of the macroscopic observables
ni(t, x), u(t, x) and T (t, x), results in

( mi

2πκT

) 3
2

exp

[
−mi(v − u)2

2κT

]{
∂ni

∂t
+

[
nimi(v − u)2

2κT 2
− 3ni

2T

]
∂T

∂t
+

nimi(v − u)

κT

∂u

∂t

}

+ v
( mi

2πκT

) 3
2

exp

[
−mi(v − u)2

2κT

]

×
{

∂ni

∂x
+

[
nimi(v − u)2

2κT 2
− 3ni

2T

]
∂T

∂x
+

nimi(v − u)

κT

∂u

∂x

}
= Ri[f̃ 1, f̃ 2, f̃ 3, f̃ 4]. (28)

(b) Performing the same procedure on equation (28) which had been applied to obtain
equations (21), (22) and (24), namely multiplying equation (28) by 1,miv and 1

2miv
2 +Ei ,

respectively, summing up over i (in the last two cases) and integrating over v leads to

∂ni

∂t
+

∂

∂x
(niu) = Si i = 1, . . . , 4 (29)

∂

∂t

[
u

∑
i

mini

]
+

∂

∂x

[
u2

∑
i

mini + κT
∑

i

ni

]
= 0 (30)

∂

∂t

[
u2

∑
i

mini + 3κT
∑

i

ni + 2
∑

i

Eini

]

+
∂

∂x

[
u

(
u2

∑
i

mini + 5κT
∑

i

ni + 2
∑

i

Eini

)]
= 0 (31)

which represents a closed set of six macroscopic equations in the unknowns ni, u and T.

Once again we emphasize that the last equations represent the spatio-temporal relaxation
of the physical state of a reacting gas mixture in mechanical equilibrium to chemical
equilibrium. Finally, let us note that the quantities Si , appearing in equations (21) and (29),
are expressed by

Si = λiS1

{
λi = 1 for i = 1, 2

λi = −1 for i = 3, 4
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where

S1 =
(

µ12

µ34

)3
n3n4

(2πκT )3
(m3m4)

3
2

∫
R

3
dv

∫
R

3
dw

×
∫
S

V I 34
12 (V ,Ω,Ω′) exp

[
−m3(v1 − u)2 + m4(w1 − u)2

2κT

]
dΩ′

− n1n2

(2πκT )3
(m1m2)

3/2
∫

R
3

dv
∫

R
3

dw

×
∫
S

V I 34
12 (V ,Ω,Ω′) exp

[
−m1(v − u)2 + m2(w − u)2

2κT

]
dΩ′. (32)

Now, if the endothermic cross section I 34
12 , equation (9), is inserted into equation (32), and

the integrals are explicitly computed, we obtain, after rather cumbersome calculations, the
reaction rate

S1(n1, . . . , n4, T ) = −4πβ
µ34

κT

[
n1n2

(
m3m4

m1m2

) 3
2

exp

[
− E

κT

]
− n3n4

]

×
{

χ

π

√
2πκT

µ34
exp

[
−µ34χ

2

2κT

]
+

(
κT

µ34
− χ2

) [
1 − erf

(√
µ34

2κT
χ

)]}
.

(33)

Equations (29)–(31), with S1 expressed by equation (33), represent the set of equations
describing the physical state of the detonation process in the three regions D1,D2 and D3.

4. Analysis and solution of the detonation problem

According to the physical phenomenology presented in the introduction, the analysis of the
detonation problem will be carried out by assuming that:

(1) In the reaction zone the gas mixture is in chemical non-equilibrium but in mechanical
equilibrium. Indeed, the macroscopic equations (29)–(31) represent such a physical
situation.

(2) Since detonation is initiated by the exothermic reaction 3 + 4 → 1 + 2, hereinafter the
number density of the ‘second’ gas component, namely n2, is assumed as the progress
variable of the chemical production process.

Assumption (1) seems to be physically consistent since the typical time of elastic relaxation
is several orders of magnitude shorter than that of chemical relaxation.

Since we are searching for steady solutions to the detonation problem, let us change our
frame from laboratory coordinates to steady ones attached to the shock wave moving with
constant velocity D through the transformation

z = x − Dt . (34)

Consequently, we have ∂/∂t = −D d/dz and ∂/∂x = d/dz. Let us then indicate with
z0 ≡ x+

0 − Dt and zN ≡ x−
0 − Dt the downstream and upstream (Von Neumann point)

coordinates of the shock jump, respectively. In the same fashion, we will denote the coordinate
of the final point of the reaction zone with zF . Moreover, keeping in mind the macroscopic
equations (29)–(31), we can now characterize the physical states of the two regions D1

and D2.
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(a) In region D1 = [z0, +∞), where the mixture is at rest in absolute equilibrium and with
negligible reaction rate, the physical state is given by



ni(z) = ni0

u(z) = 0

T (z) = T0

S1(z) = 0

∀z ∈ D1. (35)

(b) In region D2 = (zF , zN), the state variables n1(z), . . . , n4(z), u(z) and T (z) change their
values under the influence of chemical disequilibrium (S1(z) �= 0). At the extrema of D2,
the physical state is characterized by{

n2 = n20 for z = zN

S1 = 0 for z = zF

(36)

since in zN the reaction starts and n2 is assumed to have still the same value as in D1,
while in zF the chemical reaction is completed and the reaction rate vanishes.

We now apply transformation (34) to the macroscopic equations (29)–(31) and use
property (14) (conservation of mass species within the bimolecular reaction) to rearrange
equations (29). We get

(u − D)
d

dz
(n1 + n3) + (n1 + n3)

du

dz
= 0

(u − D)
d

dz
(n2 + n4) + (n2 + n4)

du

dz
= 0

(u − D)
d

dz
(n1 − n2) + (n1 − n2)

du

dz
= 0

d

dz

[
(u − D)u

∑
i

mini + κT
∑

i

ni

]
= 0

d

dz

{
(u − D)

[
u2

∑
i

mini + 3κT
∑

i

ni + 2
∑

i

Eini

]
+ 2κT u

∑
i

ni

}
= 0

(u − D)
dn2

dz
+ n2

du

dz
= S1(n1, . . . , n4, T ).

(37)

The first five equations of (37) are conservation laws, while the sixth, generally called rate
equation in the literature, takes into account production of species 2.

The first five equations can be formally integrated across the jump, namely from z0 to
z ∈ (zF , zN). Recalling definitions (25) and that u = 0 in z0, we obtain

(n1 + n3)(u − D) = −(n10 + n30)D
(n2 + n4)(u − D) = −(n20 + n40)D
(n1 − n2)(u − D) = −(n10 − n20)D (38)

(u − D)u
∑

i

mini + κT
∑

i

ni = p0

(u − D)

[
u2

∑
i

mini + 2
∑

i

Eini + 3κT
∑

i

ni

]
+ 2κT u

∑
i

ni = −2(E0 + Ech0)D

where the subscript ‘0’ denotes quantities computed in z0.
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From the first two relations we find

0 < u < D
which is the detonation compatibility condition [3]. The set of equations (38) can be solved as
a non-homogeneous algebraic system, expressing the unknowns n1, n3, n4, u and T in terms
of the progress variable n2, where D is treated as a parameter. After some manipulations, we
obtain for u the following two solutions:

u±(n2;D) = 2En2 + 3ρ0D2 − 5p0 ± √
P(n2;D)

8ρ0D
(39)

where

P(n2;D) = (2En2 + 3ρ0D2 − 5p0)
2 − 32ρ0ED2(n2 − n20). (40)

Accordingly, for the other unknowns we get

n±
1 (n2;D) = (n10 − n20)D

D − u± + n2 (41)

n±
3 (n2;D) = (n20 + n30)D

D − u± − n2 (42)

n±
4 (n2;D) = (n20 + n40)D

D − u± − n2 (43)

T ±(n2;D) = (D − u±)(ρ0Du± + p0)

κn0D
(44)

with n0 and ρ0 defined by equations (18) and (19).
In order to obtain the rate equation for the unknown n2, we plug expression (39) into the

last equation of (37):

dn±
2

dz
= − 8ρ0DS1

(
n±

2

)
[
2En±

2 − 5ρ0D2 − 5p0 ± Q
(
n±

2 ;D)][
1 ± 2En±

2

Q(n±
2 ;D)

] (45)

where Q = √
P . The signs ± in the last equation refer to solutions corresponding to u+ and

u−, respectively. Moreover, S1
(
n±

2

)
is given by expression (33) after substituting expressions

(41)–(44) for n±
1 , n±

3 , n±
4 and T ±.

Integration of equation (45) and computation of the other macroscopic observables (39)
and (41)–(43) provide the physical state of the mixture in the reaction zone. According to the
assumptions (36), this integration must be started at zN with the initial datum

n±
2 (zN) = n20 (46)

and must be stopped when the right-hand side of equation (45) vanishes, that is when n±
2

becomes constant since the reaction is completed and the gas reaches chemical equilibrium.
Due to this condition, the corresponding coordinate zF is found and the distance |zF − zN |
provides the thickness of the reaction zone. The final state of the reaction zone is then
determined by computing niF = ni(zF ), uF = u(zF ) and TF = T (zF ). Such computations
must be repeated for the explosive mixture for several D in order to find its minimum value
capable to initiate detonation. As will be shown in section 6 this minimum value of D
corresponds to the minimum value of uF , which is obviously obtained when P → 0, that is
u+

F → u−
F .

Let us now discuss the existence and physical consistence of the above solution
(39)–(45). First, solutions to the detonation problem exist when P > 0. On the other
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hand, since P(n2;D) is a convex parabola in the variable n2, values of n2 and the parameter
D assuring positivity of P must exist.

Moreover, it can easily be shown that the solution corresponding to the values of u− does
not provide the expected jump in the point zN . In fact, from explicit computations, recalling
datum (46), the limz→zN

u−(n−
2 ;D) vanishes ∀D and consequently also the quantities (41)–

(44) with superscript ‘−’ are continuous in z0. Therefore, the unique non-trivial solution to
the steady detonation problem is the one with the superscript ‘+’ in equations (39)–(45). Thus,
hereinafter, we will consider only the solution related to u+, omitting the superscripts.

Regarding the physical consistency of the above solution, we can observe that positivity
of T is evident. Moreover, since the choice of the two species 1 and 2 is free, hereinafter we
will indicate with 2 the species that satisfies in region D1 the condition n10 > n20. Such a
condition ensures positivity of n1, while positivity of n3 and n4 in equations (42)–(43) implies
that

n2(z;D) < min

[
D(n20 + n30)

D − u(z;D)
,
D(n20 + n40)

D − u(z;D)

]
.

In addition positivity of u is satisfied by

n2(z;D) >
5p0 − 3ρ0D2

2E

so that the last two expressions provide upper and lower bounds for the progress variable in
the reaction zone.

5. The Hugoniot diagram and the D-discussion

This section provides all the detonation states achieved varying the parameterD at given initial
conditions in region D1. This, as widely discussed in [1, 2], can be achieved by constructing
the Hugoniot diagram. To this end, we again consider equations (29)–(31) and let us rewrite
them in the following way:

• multiplying equation (29) by mi and summing over i results in

∂ρ

∂t
+

∂

∂x
(ρu) = 0 (47)

recalling that
∑

i miSi = 0
• replacing the variable T in equation (30) with the hydrodynamic pressure p = nκT :

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) = 0 (48)

• introducing again E and Ech in equation (31) yields

∂

∂t

(
1

2
ρu2 + E + Ech

)
+

∂

∂x

[
u

(
1

2
ρu2 + p + E + Ech

)]
= 0. (49)

Let us now apply transformation (34) to these last three equations and integrate formally
from z0 ∈ D1 to any point z in the reaction zone. We get

ρ(D − u) = ρ0D ρu(D − u) − p = −p0
(50)

(D − u)
(

1
2ρu2 + E + Ech

) − up = D(E0 + Ech0)

recalling that in D1 we have set u0 = 0.
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By eliminating the quantity u from the first and second equations of (50) and introducing
the specific volume v = 1/ρ, we obtain

p = p0 − ρ2
0D2(v − v0). (51)

The last equation is the Rayleigh line of slope −ρ2
0D2 in the plane (v, p). Analogously, by

eliminating the variables u and D from equations (50), we get

1

2
(v0 − v)(p + p0) = 1

ρ
(E + Ech) − 1

ρ0
(E0 + Ech0) (52)

which is known as the Hugoniot equation in the plane (v, p). Equations (51) and (52) are the
same equations that rule detonation in classical macroscopic theory. A more interesting form
of the Hugoniot equation (52) can be deduced to draw the Hugoniot diagram. Taking into
account relation (25), the internal energy per unit mass E/ρ can be expressed in terms of v and
p, i.e. E/ρ = (3/2)vp, and then rearranged together with the left-hand side of equation (52).
Now, the Hugoniot equation becomes(

v − v0

4

) (
p +

p0

4

)
= q

2
+

15

16
v0p0 (53)

where q = Ech0/ρ0 − Ech/ρ can be expressed through definition (25) and
equations (41)–(43) at every point z of the reaction zone for a given initial state and a fixed D
in terms of the progress variable n2(z) and the mean velocity u(z), i.e.

q(z) = E

ρ0

[
D − u(z)

D
n2(z) − n20

]
. (54)

Therefore, to compute q(z), it is necessary to integrate equation (45).
Equation (53) represents a sheaf of rectangular hyperbola in the plane (v, p) centred

at the point (v0/4,−p0/4) with q as a parameter. For an assigned propagation velocity D,
the detonation state itself is obtained at one of the two intersections between the Hugoniot
curve and the related Rayleigh line. To understand which one is the intersection point that
corresponds to the actual solution of the detonation problem, we consider the Hugoniot curve
computable through the quantity qF = q(zF ) in the final point zF of the reaction zone. For
this hyperbola, it is possible to define the Rayleigh line with slope −ρ2

0D2
J which is tangent

to the hyperbola itself in the point J . The quantity DJ is known in the literature as the
Chapman–Jouguet velocity. The point J divides the Hugoniot curve into two parts: the weak
branch below and the strong branch above. All the intersection points of the strong branch are
the actual solutions of the detonation problem (see [2]), and this will be verified numerically
in the next section.

Finally, let us note that by imposing the tangency condition between the line equation (51)
and the curve equation (53), it is possible to recover the expression ofDJ and of the coordinates
of the point J in the (v, p) plane. After some algebra one obtains

DJ =
√

15p0 + 16ρ0qF + 4
√

2ρ0qF (8ρ0qF + 15p0)

9ρ0
(55)

and

vJ = 5

8

(
v0 +

p0

ρ2
0D

2
J

)
pJ = 3

8

(
p0 + ρ0D

2
J

)
. (56)
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(a) (b)

Figure 2. Total number density n versus z in the reaction zone (N,F) for D = 4500 m s−1

(a). Corresponding Hugoniot diagram (b): the points on the Rayleigh line between SN and SF

denote the detonation states in the reaction zone. The initial state is indicated by O and the
Chapman–Jouguet point by J .

6. Numerical results

In this section, we show some numerical simulations to describe the detonation structure. The
simulations regard the following chemical reaction

H2O + H � OH + H2

for which the heat of reaction E = 63.3 kJ/mole and the threshold for the exothermic reaction
EA = 13.8 kJ/mole is linked via

χ =
√

2EA

µ34

to χ = 3927 m s−1. The chosen constant β = 109 l/mole s that scales the cross section (8),
corresponds to the Arrhenius parameters of the considered reaction.

By numerically integrating equation (45), starting from the initial datum n20, and using
equations (39) and (41)–(44) we are able to recover all the macroscopic quantities of the system
from the Von Neumann point of coordinate zN to the final point zF . In figure 2(a), we plot
the profile of the total number density n versus z in the reaction zone for a fixed value of D =
4500 m s−1 and for the following values of the macroscopic quantities in the unperturbed
region D1: n10 = 0.03 mole l−1, n20 = 0.02 mole l−1, n30 = 0.1 mole l−1, n40 =
0.2 mole l−1 and T0 = 298.15 K. By varying D in this simulation, it turns out that the
minimum value allowing existence of a solution is D = 3110 m s−1. The coordinate zF which
marks the thickness of the reaction zone is defined in the numerical computations by the
minimum value of the variable z for which the difference of two consecutive particle densities
n2(z) and n2(z + 
z) is less than 10−5 mole l−1. We fixed 
z as 5 × 10−10 m. In figure 2(b),
we represent the same results in the Hugoniot plane (v/v0, p/p0). We plot two of the Hugoniot
hyperbolae: the lower one for z = zN and the upper one for z = zF . The detonation states in
the reaction zone are all the points of the Rayleigh line (for the chosen value of D) between SN

and SF . Moreover, we draw the Chapman–Jouguet point J and the initial state O. It should
be noted that the solution lays on the strong branch above J .

Figures 3(a)–(c) present a parameter study showing how the speed of the shock wave
D = 3500, 4000 and 4500 m s−1 affects the macroscopic state variables n, T and u in and the
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(a)

(b) (c)

Figure 3. Total number density n (a), temperature T (b) and mean velocity u (c) in the reaction
zone for several shock wave speeds.

thickness of the reaction zone, respectively. We observe an approximately linear increase of
the temperature profiles (figure 3(b)), whereas the thickness of the reaction zone (figure 3(a))
decreases nonlinearly for increasing speed of the shock wave. This behaviour is expected on
physical grounds. The higher the speed of the shock and consequently the temperature in
the reaction zone, the faster the reaction runs because increasingly more particles are able to
overcome the threshold energy necessary to undergo a chemical reaction. In addition, due
to the mass action law, the chemical equilibrium is shifted due to the increasingly higher
temperature, which results again in a reduction of the reaction zone. It is also plausible that
according to higher temperature profiles with increasing shock wave speeds, we have to expect
an increase for the bulk velocity u as shown in figure 3(c). It should be noted that these results
are in good agreement, qualitatively and, at least, for the order of magnitude of observables,
with those reported in [1, 2]. This matter will be discussed in the next section.

The developed model also reflects the influence of the energy threshold on the physical
state variables. To demonstrate this effect regarding the total number density n, we recompute
the profiles in figure 3(a) by assuming EA to be 2.0 kJ/mole. The comparison of the results
in figure 4 with those in figure 3(a) reveals that the reaction zone becomes shorter in the case
of a lower threshold.

Finally, we show with figure 5 that a maximum value for the thickness of the reaction
zone with respect to the speed of the shock wave exists. This maximum is located close to the
minimum value of D.
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Figure 4. Total number density n and thickness of the reaction zone zF calculated for a small
threshold energy EA = 2 kJ/mole and several shock wave speeds.

Figure 5. Thickness of the reaction zone zF versus the speed of the shock wave D.

7. Concluding remarks

The aim of this paper is to provide an accurate analysis of the profiles of macroscopic quantities
in the so-called reaction zone, which follows the steady shock propagation due to a detonation
process. In more detail, such an analysis allows us to calculate the thickness of the reaction
zone for finding the coordinate zF , where the zone ends and the chemical disequilibrium due to
the entire process of detonation disappears. Moreover, the analysis carried on in the paper also
allows us to evaluate the minimum value of the detonation velocity for which the detonation
itself occurs.

In the authors’ opinion, to pursue the mentioned objectives, it is convenient to set the
detonation problem at a microscopic scale describing the physical system via a Boltzmann
equation, which takes into account the class of chemical reactions driving the process. The
main advantage of this choice consists, as shown in section 3, in recovering in a rigorous way
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the equations governing the process at the macroscopic scale and providing at the same time
an accurate analytical expression of the reaction rate.

Moreover, in section 4 we propose a computational method capable of providing the
aforementioned profiles in the reaction zone, almost all in analytical form. This requires only
the numerical solution to a boundary-value problem governed by a single ODE. In addition,
by using the Hugoniot diagram (see section 5), such a solution represented in the (v, p)

plane allows us to evaluate the value of the so-called Chapman–Jouguet velocity, which is the
minimum value of the detonation velocity assuring the existence of a steady detonation at a
given physical state of the gas mixture in the unperturbed region.

In section 6, we present some numerical results showing profiles of number density,
temperature and mean velocity versus z in the reaction zone. These results are then reported
in the (v, p) plane. Moreover, we also provide the thickness of the reaction zone as a function
of the detonation velocity.

As discussed in section 1, these results cannot be easily compared to other theoretical
results. Nevertheless, on a qualitative ground, they are very similar to those obtained by using
a Monte Carlo method, which have been presented in the two recent papers [17, 18]. In
fact, these authors and those of papers [19, 20], which are mainly concerned with stability
problems, consider chemical reactions as responsible for ultrafast or pathological detonations,
such as A + M → B + M,M being alternatively A or B, and A → B → C (the former
exothermic, the latter endothermic). Therefore, quantitative comparisons with the reactions
of the present paper are not possible.

As already anticipated in section 1, the method proposed here can be applied to
reactions other than bimolecular ones, which drive detonations, as for instance those of
dissociation/recombination for which a forthcoming paper is in preparation.

In fact, most of the experimental results presented in the literature are concerned with
detonations driven by dissociation reactions. These results can be found in [1, 2] and several
papers, as for instance, the very recent one [37], where dissociation of the system H2–Cl2

is considered. In general, in these experiments quantities relevant to the entire process of
detonation are not measured, since the observation is limited to the so-called detonability
conditions, i.e. the determination of the propagation velocity of the shock and the values of
macroscopic observables on its edge in terms of the physical state of the gas in the unperturbed
region.

Of course in this paper, as in all the papers quoted here, the detonation process is
somehow idealized through a description in 1D. Many experimental results and measurements
are nowadays documented as pattern formation in 2D. Consequently, a natural improvement
of the present theory, hopefully comparable with experiments, should be developed in more
than one dimension.
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